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Abstract. We describe a regression-based statistica methodology suitable for predicting
field scale spatia salinity (EC,) conditions from rapidly acquired el ectromagnetic
induction (EC,) data. This technique uses multiple linear regression (MLR) models to
estimate soil salinity from EC, survey data. The MLR models incorporate multiple EC,
measurements and trend surface parameters to increase the prediction accuracy and can
be fitted from limited amounts of EC, calibration data. This estimation technique is
compared to some commonly recommended cokriging techniques, with respect to
dtatistical modeling assumptions, calibration sample size requirements, and prediction
capabilities. We show that MLR models are theoretically equivaent to and cost-effective
relative to cokriging for estimating a spatially distributed random variable when the
residuals from the regression model are spatialy uncorrelated. MLR modeling and

prediction techniques are demonstrated with data from three salinity surveys.

1. Introduction

Soil sdinity assessment represents an important component
in agriculture management and water alocation strategies. Ex-
cessive soil salinity can result in crop yield reduction, ground-
water contamination, and significant financial losses. The need
for rapid, cost-effective appraisal techniques has become crit-
ical; as of 1984, 2.9 million acres (1.2 million hectares) of
irrigated farmland in California alone were estimated to be
suffering from excessive soil sdinity levels [Backlund and
Hoppes, 1984].

The ability to diagnose and monitor field scale sainity con-
ditions has been considerably refined and improved through
the use of electromagnetic induction survey instruments. Three
types of portable instruments have been developed for mea
suring the apparent electrical conductivity (EC,) of the soil:
(1) four-electrode sensors, including either surface array or
insertion probes, (2) remote electromagnetic (EM) induction
sensors, such as the Geonics EM-31, EM-34, or EM-38, and (3)
time domain reflectometric sensors [Rhoades, 1992; Rhoades
and Miyamoto, 1990; McNeil, 1980]. (Mention of trademark or
proprietary products in this manuscript does not constitute a
guarantee or warranty of the product by the U.S. Department
of Agriculture and does not imply its approval to the exclusion
of other products that may aso be suitable.)) Both the four-
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electrode and remote EM induction sensors give depth-
weighted EC, measurements which are affected by the salinity
distribution throughout the soil profile, as well as other soil
physical properties [Rhoades and Corwin, 1990; Rhoades et al.,
1990; Slavich, 1990; Williams and Baker, 1982].

The adaptation of electromagnetic induction sensors for soil
electrical conductivity measurement greatly increases the
speed with which reconnai ssance surveys can be carried out.
However, the conversion from EC, to soil sdinity (EC,) re-
quires knowledge of soil properties which are often too costly,
difficult, or time consuming to measure during rapid survey
work [Rhoades, 1992]. This has led to the application of various
statistical techniques for directly predicting soil salinity from
survey EC, data. Two types of statistical methodologies capa-
ble of predicting soil EC, from survey EC, data are (1)
geostatistical cokriging techniques and (2) multiple linear re-
gression techniques [Yates et al., 1993; Lesch et al., 1992].
Cokriging models have been successfully employed to improve
the estimation accuracy of a number of soil physical properties
during various types of soil survey and water resources work
[McBratney and Webster, 1983; Yates and Warrick, 1987; Mulla,
1988; Seo et al., 1990a, b]. This methodology is specificaly
designed to handle spatialy correlated random variables and
hence is often suggested as an ideal procedure for analyzing
multivariate soil survey data. On the other hand, multiple lin-
ear regression (MLR) models have not received much atten-
tion in the soils literature. MLR models typicaly are not
thought of as spatial models, since they ignore the correlation
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inherent in spatial data. Indeed, regression models have been
viewed by some authors as inferior “classical” techniques in-
capable of achieving the same degree of prediction accuracy
[Vauclin et al., 1983].

Thisisthe first paper of a two-part series which describes
and documents the statistical methodology presently in use at
the United States Salinity Laboratory for predicting field scale
salinity conditions from rapidly acquired electromagnetic in-
duction survey data. In this paper we discuss the development
and application of MLR calibration models capable of produc-
ing multiple types of soil salinity estimates, such as EC, point
estimates, conditional probability estimates, and field average
estimates. In particular, we compare this modeling strategy to
the more commonly suggested cokriging approach, discuss
their similarities and differences, and describe when a MLR
model is theoretically equivalent and, in a cost-effective sense,
preferable to cokriging for spatial prediction purposes. The
predictive capabilities of the MLR modeling methodology are
demonstrated with data from three salinity surveys carried out
in 1988 and 1993.

2. Theory

This section is divided into three parts. In the first part we
review two spatial prediction modeling techniques capable of
exploiting covariate information: cokriging and spatial auto-
regression (SAR) models. We explore the similarities between
these two techniques, show how they both reduce to a MLR
model when the residua errors are spatially uncorrelated, and
discuss when the MLR modeling approach should be pre-
ferred. In the second part we describe statistical tests that are
appropriate for detecting residual spatial autocorrelation
within a MLR model. In the third part we show how a MLR
model can be used to construct both point and conditional
probability estimates for a number of different quantiles of
interest.

2.1. Spatia Prediction Models That Incorporate
Covariate Information

Cokriging is the most versatile and rigorous statistical tech-
nique for spatial point estimation when both primary and sec-
ondary (covariate) attributes are available within the data set.
A cokriging analysis attempts to improve the estimation of the
spatially dependent primary attribute by incorporating one or
more correlated covariates. Mathematically, the p-covariate
cokriging estimator may be written as

n 4 m
z(ug) = 3 api + 2, D Ay (1)

k=1 j=1

where o, are the weights applied to the » surrounding «;
primary samples, and A, are the weights applied to the m
surrounding w;,, secondary samples (assuming that all p sec-
ondary samples are available at each of the m sites). Theoret-
ica details concerning cokriging can be found in the works by
Journel and Huijbregts [1978] and Cressie [1991]. An applied
example of cokriging using two covariates to improve the spa-
tid estimation of soil particle size can be found in the work by
McBratney and Webster [1983].

In order to estimate the optimal weights in (1), ajoint model
for the matrix of covariance functions must first be specified.
This must include a model of the primary variogram, p sec-
ondary variograms, and al pairwise cross variograms. Assum-

LESCH ET AL.: SPATIAL PREDICTION OF SOIL SALINITY. 1

ing al cross variograms are symmetric, there will be atotal of
(p + D(p + 2)/2 variograms to estimate whenp covariates
areincluded in (1). In theory, there is no limit to the number
of covariates which may be used, and if all covariance functions
are known, ordinary cokriging is an optimal, best linear unbi-
ased prediction technique. In practice, because of the number
of variograms which must be estimated, only one or two sec-
ondary attributes are typicaly used during a cokriging analysis.

Data sets with numerous covariates and only a limited num-
ber of primary attribute sites can be particularly difficult to
analyze using cokriging, because al of the necessary vario-
grams are difficult to estimate. Two techniques designed to
circumvent this problem are “collocated” cokriging and “pseu-
do” cokriging. Collocated cokriging is a reduced form of ordi-
nary cokriging where only the collocated secondary data are
retained by the model during estimation of the primary vari-
able [Deutsch and Journel, 1992]. Hence this estimator requires
knowledge of only the primary covariance function (vario-
gram) and the cross covariance matrix of the collocated pri-
mary and secondary variables. Mathematically, thep-covariate
collocated cokriging estimator is defined as

n P
Z(uo): Ea,-u,»+ 2 )\kvk

i=1 k=1

(2

When p =1, collocated cokriging is equivalent to ordinary
kriging with an external drift. Likewise, when p> 1 and the v,
attributes are the physica (x, y) coordinates, collocated
cokriging is equivalent to universal kriging, also commonly
referred to as ordinary kriging with a trend surface model. In
general, collocated cokriging can be seen as a way of combin-
ing ordinary kriging with multiple linear regression techniques.

Pseudo cokriging is another approach suggested by some
authors as an effective way to perform a cokriging analysis with
limited data [Clark et al., 1989; Myers, 1991; Yates et al., 1993].
This procedure relies on the use of so-called “pseudo cross
variograms’, which can be estimated with data from nonover-
lapping locations, hence allowing for a reduction in the pri-
mary attribute sampling intensity. Yates et al. [1993] give ex-
amples of pseudo cross variograms estimated with minimal
numbers of primary attribute samples (n = 20). However,
while this approach can facilitate the estimation of the cross
variograms, it does not appear to offer an effective methodol-
ogy for estimating the primary variogram using the same re-
stricted attribute sample size.

Classica statisticians have developed their own form of spa-
tial prediction models, independent of the geostatistical tech-
niques described above. These prediction equations are known
as simultaneous autoregression (SAR) models and represent
regresson models with spatially correlated residual errors
[Cliff and Ord, 1981; Ripley, 1981; Upton and Fingleton, 1985;
Cressie, 1991]. Mathematically, these models are defined in
matrix form as

Y=XB+n (3)

where Y isan (n x 1) vector of dependent (primary) variables,
B represents a (p + 1 X 1) vector of parameters, X is the
(n X p+ 1) matrix of independent (covariate) variables, and
nisan (n X 1) vector of unobserved, correlated errors. The
errors may be correlated in a number of different ways through
the use of an (n x n) proximity matrix W, where the diagonal
elements of W are set to 0 and the off-diagonal elements reflect
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Cokriging and Multiple Linear Regression

An Outline Describing Some of the Generad Assumptions, Conditions, and Modeling Techniques Inherent in

Cokriging

Multiple Linear Regression

Response varidble
Correlated covariates

Model
Modeling assumptions

Parameter estimation

u,i =1, n

(X1 Xj2, " 0 Xp)3
! j = 1, m(]fn>n)

ug = Togu; + ZT Ayx t o8

(u, x, x5, - -+, x,) ae second-order stationary and
spatialy cross correlated throughout the survey area;

u must depend on (xy, x,,- -+, x,) in alinear manner;

al primary and cross variograms must be known or
estimated, and must be positive definite

use (U, xq, X, , x,) to estimate al primary and
Cross variograms,

derive o; and A, coefficients from estimated

vy i = 1N
(le,_ Xjo, s Xpp)s
] = 1 m(m>n)
Y, = by + Zhxjy + &
y is linearly related to (x, x5, -+, x,);
b, by,-++, b, must be known or estimated;
e isassumed to be randomly distributed with O mean
and variance ¢?, and spatially independent

use standard regression techniques to estimate b,
by, +++, b, (i.e., employ Gauss-Markoff theorem
and ordinary least squares estimation)

variograms (i.e,, by inverting the estimated

covariance matrix)
Prediction space anywhere within survey area

Prediction attributes
isan exact interpolator;

given x,, data and estimated cokriging equations,
nearby secondary u; and x;, data can be used to
theoretically improve the prediction of i,

ho=u;adl i i=1,---, nlocations, i.e, cokriging

only at points within survey area having measured
covariate (xy, x5, -, x,,) information

generadlly 9,#y,athei,i=1,---,n locations;
i.e., regression is not an exact interpolator;

given x,, data and estimated regression equation,
nearby u; and x;, data contain no useful
information for predicting ¥,

the spatial linkage between the dites (i.e, attribute similarity,
physica distance relationship, etc.). For example, if the true
errors i satisfy the simultaneous autoregressive assumption

n=pWn+e (4

where p € [- 1, 1] and £ ~ N(0, o*I), then (3) becomes a
spatially autocorrelated errors (AE) model:

Y =pWY + XB — pWXB + ¢ (5)

Likewise, defining n = pWY + & creates an autoregressive
response (AR) model:

Y=pWY+XB+¢ (6)

Both the autocorrelated errors and the autoregressive re-
sponse models are generalized versions of the more well-
known ordinary multiple linear regression (MLR) model,
which can be derived from (5) by defining the residual vector
smply as n = E.

Although developed separately, SAR and cokriging models
are smilar in certain respects. Both the autocorrelated errors
model and the cokriging model estimate the dependent (pri-
mary) variable using the neighboring values of dependent (pri-
mary) and independent (secondary) variables. Additionally,
autoregressive response models and collocated cokriging mod-
els each estimate the primary variable using neighboring de-
pendent variables aong with the collocated covariate data. In
fact, a MLR model, which is a specia case of the SAR model,
is dso a specid case of an ordinary cokriging model. When
secondary data exist a al new prediction sites, the residual
error vector is assumed spatially uncorrelated, and the joint
model for the matrix of the covariance functions is assumed
known, ordinary cokriging reduces exactly to multiple linear
regression (a proof is given in the appendix).

Nonetheless, the modeling strategies espoused by the two
approaches are quite different. If faced with the task of pre-
dicting a primary variable from a larger sample of spatially
dependent covariates, the classical statistician would begin

with a SAR model where the residual vector was first defined
to be m; = . More elaborate SAR models (and/or possibly
geostatistical models) would be attempted only after regecting
the assumption of independent residuals. On the other hand,
the geostatistician would typicaly start out with the more elab-
orate model (cokriging) and use more restrictive models only if
the size and/or dimension of the data set required it.

Part of this discrepancy in modeling strategies can be attrib-
uted to the assumptions and/or goals of the anaysis. There are
clearly differences between cokriging and multiple linear re-
gression; some of the more important differences with respect
to model assumptions and prediction capabilities are outlined
in Table 1. For example, cokriging is the only technique capa
ble of predicting a primary variable a a site where no second-
ary information exists (i.e., interpolation). Also, there are cases
where variable anisotropy must be modeled, a change of sup-
port must be made, the incorporation of nearby primary and/or
secondary data will definitely improve the prediction of the
primary variable, etc., al of which suggest a geostatistical ap-
proach. However, another common scenario is one where no
interpolation is necessary (a sufficiently fine grid of covariate
data can be acquired quickly and cheaply) and the joint cor-
relation between the collocated primary and secondary vari-
ables is quite strong. Such a scenario occurs during salinity
surveying and reconnaissance work. A series of eadily obtained
EM instrument readings are acquired across a field on a dense,
systematic survey grid. Soil samples are then acquired at a
limited number of these survey sites, returned to the labora
tory, and analyzed for a constituent (gross soil sdinity, EC))
which is expected to be highly correlated with the instrument
readings. In this latter scenario it is judtifiable to initidly fit a
MLR model relating the soil EC, to the instrument EC, read-
ings and then test for residual spatial autocorrelation. If the
residuals appear approximately independent, then the much
smpler MLR equation can be used in place of more compli-
cated geodtatisticad or SAR models for sdinity prediction.

For the remainder of this discussion we assume that all



376

necessary covariate data exist at every new prediction site and
that the residual error structureis spatially independent for all
nonzero lag distances (i.e., the residua variogram is pure nug-
get). As already stated, when all the covariance functions are
known, cokriging and multiple linear regression are mathemat-
icaly equivalent, in that they produce identical estimates at the
new prediction sites. In practice, however, the MLR modeling
strategy should be preferred for a number of reasons. First, the
covariance functions are rarely ever known a priori; instead
they must be estimated from the data. The p -covariate cokrig-
ing model will require (p + D(p + 2)/2 estimated vario-
grams, with each variogram usualy requiring multiple param-
eter estimates. Note that the MLR model will require onlyp +
1 parameter estimates for the same data set. Second, because
there are significantly fewer parameters to estimate, the re-
quired sample size of the primary (dependent) attribute can be
greatly reduced. Estimation of isotropic semivariograms typi-
cally require at least 60-80 samples, whereas 15-20 carefully
selected sample sites will usually suffice for MLR moddl esti-
mation. This can be extremely important in practice if the
primary attribute is especialy difficult or expensive to obtain.

There are additional reasons to favor a regression model,
which are directly related to the generd linear modeling ap-
proach. For example, plain (linear) cokriging is not well suited
for estimating the probability that the predicted attribute ex-
ceeds a certain threshold level, i.e,, Prob (z(u,)) > a Inthe
geostatistical framework these types of probability estimations
require more complicated modeling strategies such as indica-
tor cokriging or digunctive cokriging [Journel and Huijbregts,
1978; Yates, 1986]. However, as we shall show, the MLR model
can predict both a point estimate and a threshold probability
level. Additionally, the MLR model can be used to directly test
for changes in the average attribute level within the survey area
over time. Finally, if the primary attribute is sampled at mul-
tiple depths, a multivariate multiple linear regression model
can be easily adapted to make the necessary three-dimensiona
predictions.

2.2. Residual Spatial Autocorrelation Tests

Use of a MLR model for spatia prediction is only appro-
priate when the residual errors appear approximately indepen-
dent. Residual spatial autocorrelation tests have been devel-
oped in the statistical literature, the most well known being the
modified Moran test statistic [Brandsma and Ketellapper, 1979].
The modified Moran test statistic can be expressed in matrix
notation as

Iy, = (EWe)/(e'e) @)

where e represents the vector of observed model residuals and
W is again a proximity matrix. Specification of the proximity
matrix depends on the spatial data relationship; a typical spec-
ification for n distinct sites in R* would be w;; = 0 for i =
and

(l/d,»zj)
Wy=—"— (8)

n

>, (1/d3)

i=1

for i # j, where d;; represents the physical distance between
sitesi and j (and the summation term in (8) ensures that each
row within W sums to 1). Brandsma and Ketellapper [1979]
show that the first two moments of this test stetistic are
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E(Iy) = r(MW)/(n — p) 9
Var (I) =[trMWMW’) + tr(MWMW)
+ {trtMW)}/((n - p)(n — p+ 2)) —{EUW} (10)

where p equals the number of model parameters, tr( ) de-
notes the trace of a matrix, and M = | —X(X'X)"'X'". For
ordinary least square residuals it has been proved that the
asymptotic distribution of the Moran test statistic is normal
[Cliff and Ord, 1981]; hence the usual procedure isto compare
the standardized Moran residual score (I, - E(Ix))/
(Var (I,,))""? to the standard normal distribution.

In order to use the I,, statistic to test for short-range resid-
ual autocorrelation, a specialized primary attribute sampling
design can be employed. Suppose that within afield atotal of
n sites from m different “quadrants’ are to be chosen for
sampling. Let n = 2m, where every pair of sites in each
guadrant are located some fixed small distance d apart; then
we have a balanced, two-stage cluster design. Let r represent
the vector of observed residuals from the estimated MLR
equation and define w,; = 1if the two residual's corresponding
to sitesi and j are from the same quadrant, w,; = O otherwise.
Order the r vector such that the first residuals from the m
guadrants occupy spaces 1, 2, -+, m, and the second resid-
uals occupy spaces m+ 1, m+ 2, -+, n. Then from (7) the
Moran test statistic becomes

Z,(d) |: zriri+m+2 Titiom /Erzz
i=1 i=m+1 i=1
I

- ZErirf+m/2 "iZ
i=l

(11)

Note that (11) represents a test for positive residua autocor-
relation at lag d, where d is the separation distance between
adjacent sample pairs.

Suppose now that these sample pairs occur close enough
together to have identical secondary covariate levels. For ex-
ample, during a salinity survey this can occur because the
covariates (EM instrument readings) measure a much larger
volume of soil than that represented by the core sample (and
hence more than one core sample can be collected at any given
survey site). In regression theory, when more than one re-
sponse (primary) measurement is observed at identical covari-
ate levels, aresidua “lack-of-fit” test may be performed. De-
tails concerning the development of a lack-of-fit test can be
found in most standard regression and experimental design
textbooks, for example, Myers [1986, pp. 72-75] or Box and
Draper [1987, pp. 70-74]. The general approach is to partition
the residuals into two sum of sguare error estimates, a pure
error component, SS,,,.., and a lack-of-fit error component,
SS,.5, ad then compare their ratio to an appropriate F distri-
bution. For our situation the SS,,,. error component, SS,q¢
component, and appropriate F test reduce to

— l % _ )2
Sspure - 2 (ri Vitem
i=1

=

1 m
Sslof = E E (rz + ri+m)2 (13)
i=1
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SSie/(m —p — 1)
SSpure/m

(14)

Faz/Z,m—p— 1m =

Expanding the quadratic termsin (12) and (13) and substitut-
ing these expressions into (14) yields

F =[m/(m-p-1)]

[(Ej:r,2+ 2§riri+m)<iriz“ 2 i’t’wm) ]

i=1

@as)
From (11) we know that
2 iriri+m = Iy(d) ér?
i=1 i=1l
and thus (15) becomes
P (1 + Iy(d))Im (16)

@ -Iy@)im-p- 1)

Hence in the above example the traditional lack-of-fit F sta-
tistic is a simple function of the modified Moran test statistic.

In an experimental setting a lack-of-fit test is designed to test
for model misspecification. In a spatial setting it is usualy
reasonable to assume that any spatial autocorrelation can be
modeled as a monotonically decreasing function of the sepa
ration distance, d, between residuas. Hence this same test can
be used as a (positive) residual spatial autocorrelation test
where the null hypothesisis H,: r ~ N(0,a°I), implying Cov
(r;;r;)=0for al d; > 0. When a lack-of-fit test is appro-
priate (asin our sdinity survey example) it can be used in place
of the Moran test. Additionally, multiple cores do not have to
be extracted at all the sample sites. Duplicate samples need to
be collected a only afew sites, thus further reducing the total
size of the (expensive) primary data set.

2.3. Derivation of MLR Prediction Capabilities

Once a MLR model has been established, it can be used to
construct a number of useful salinity estimates. These include
both point and conditional probability estimates at individual
survey sites, field average estimates, and estimates of the pro-
portion of the field having salinity levels within a specific range
[a, b]. The derivation of these various estimates is discussed
below.

Suppose a MLR model has been estimated with data from »
sample sites, where these “calibration” sites form a subset of a
larger set of N survey sites, and the residual errors appear
independently distributed. Define s to be the estimated mean
square error, b to be the vector of estimated parameter coef-
ficients, X to be the matrix of caibration covariates, and x; to
be the vector of prediction covariates associated with the jth
prediction site, j = 1, -+, N —n. Then, from a Bayesian
point of view, the posterior distribution of y; follows a ¢ distri-
bution; ie., p(ylx;) ~t[b'x, s>(1 + x(X'X)"'x),n—p —
1], assuming noninformative priors on the parameters and
mean sguare error [Box and Tiao, 1973; Press, 1989]. This
result facilitates the construction of the following two esti-
mates. (1) the predicted response level at sitej,

5 =b'xp (17)
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and (2) the conditional probability that y;= a or, more im-
portantly, a =y;=b,

5
o[a, »]; =J tih—p— 1) dt, (18a)

o1

6la, b); = fﬂzt(n~p— 1) dt,

al

(18b)

where t{n - p - 1} represents the t distribution with n -
p - 1 degrees of freedom, «a; = (a - $;)/v, @, = (b -
), and v = s7(1+ x(X’X)"'x;). Note that (17) yields a
point estimate, and (18b) can be used for estimating probabil-
ities associated with different classification intervals.

Assuming the survey was carried out on a centric, systematic
grid over the entire field, the following population estimates
can then be constructed from (17) and (18b): (1) the average
response level across al N —x prediction sites,

N-n
Gyn=1/(N—n) > 5,

j=1

(19)

and (2) the proportion of the N —r survey sites having
response levels within the range [a, 1],

N-n

O[a, bly-, = 1/(N — n) 2, 6[a, bl

j=1

(20)

an estimate of the average response level for the entire field
can be found by pooling the predicted mean response level,
G, With the observed mean level of the r calibration sites,

Y5

G =n/N)ys+ (N —n)IN)Gy_,. (21)
From sampling theory [Thompson, 1992],
Var (G) = 7 = (N —n)/N)?

s L(1/(N = n)) + X5 (X' X) " Xpna) ], (22)

where

N-n
X = (L/(N = 1)) > x,.

j=1

Hence G ¢, 1,27 Can be used to construct a 100(1 -
a)% confidence interval on the mean response level, if so
desired. Likewise, an estimate of the proportion of the field
with response levels within the range [a, b] may be found by
pooling the predicted probabilities with the observed frequen-
cies; for example,

®la,b] = (1/N)py + (N ~n)/N)@[a, bly-n  (23)

where p,, is the observed proportion of calibration sites con-
tained within the range [a, b]. Provided N is large and a
systematic survey is employed, both of these population esti-
mates should give a good approximation to the true levels.
An estimate of the classification accuracy for the joint set of
N —n new predictions can be derived in the following man-
ner. Suppose there are i=1, ---,m distinct classification
intervals and define f,; = 1 if 9, is contained within the ith
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interval [a;,b,], f;; = 0 otherwise. Then the overal classifi-
cation accuracy is

m N-n

Cy=1/(N — n) E E [fiiflas bil;).
i=1 j=1
Hence (N —#n)C , represents an estimate of the number of
prediction sites correctly classified.

A spatial map can be constructed in one of three ways. If the
survey grid is sufficiently dense, then the predicted salinity
levels can be plotted directly. Typically, one would assign each
9 prediction into its appropriate classification interval and then
produce a raster map displaying the different classification
intervals using various symbols and/or patterns, etc. If the
original survey grid is too coarse, ordinary kriging can be used
to interpolate the y predictions onto afiner grid. These kriged
estimates could then either be used in a contouring algorithm
(to produce a contour map) or, like the regression predictions,
converted into classification intervals and displayed as a raster
map.

When ordinary kriging is used to increase the resolution of
the prediction map, the following points should be kept in
mind. First, we recommend replacing the observed calibration
data with their corresponding predicted levels before estimat-
ing the variogram, to ensure that al the data used for the
variogram estimation are derived from a single probability
distribution. Second, the analyst should be aware that the final
kriged predictions will contain two sources of error; one in-
duced by the regression model and the other induced by the
kriging equations. The exact distribution of this composite
error structure will typically be quite complex, and its deriva-
tion is beyond the scope of this paper. Therefore, while a
combined regression/kriging approach represents a reasonable
ad hoc way to increase the spatial resolution of a prediction
map, one should note that the estimated kriging error will
more than likely underestimate the true prediction error. Be-
cause of this, we do not recommend creating a map of the
estimated kriging errors.

At test for a shift in the average response level over time can
be performed if alimited number of additional primary sam-
ples are acquired at some point in the future (provided each
sample is collected a one of the N —n previous survey
locations). Such a test can be computed by comparing the
difference of the average observed and (regression model)
predicted mean levels, divided by the calculated prediction
error, to at distribution with n~ p— 1 degrees of freedom.
For example, suppose new soil samples are acquired at k pre-
viously surveyed prediction sites. Define ii = I/k
Gy + 0 ¥, 9 = Uk, + 0 + 9, %, = Ik
x1 + o+ x), and 7% = s2[(1/k + x,,(X’X)"'x,,.)].

hen the r test for a shift in the average response level over
time can be computed as ¢t = (i — g)/T.

When the primary variable is acquired at ¢ sample depths,
¢ >1, a standard multivariate MLR equation may be used to
mode! dl the data smultaneously [Johnson and Wichern, 1988].
All of the prediction estimates discussed previousy remain the
same.

Finally, sometimes it may be more appropriate to first trans-
form the primary variable (and possibly aso the covariates)
before the model estimation stage begins. This is commonly
done during sdinity modeling; a natural log transform is ap-
plied to both the EC, response levels and field EC, readings
and then the MLR mode is estimated from these log-log data

(24)

[Lesch et al., 1992]. If a transformed value of the primary
variable is used in the model and back transformations of the
point estimates are made, these back transformed estimates
will be biased. For our particular application this does not
present a serious problem. For example, exp (¥,) can be con-
sidered an unbiased estimate of the median level of the true
response. Likewise, exp (G) represents an estimate of the
median field response level, if the underlying EC, distribution
is lognormal. All probability estimates remain undisturbed,
provided the range endpoints [a, b] are replaced with [In (a),
In (b)] . In this same manner the mapping classification inter-
vas may be defined using log-transformed endpoints, and a
test for a change in the predicted mean In (EC,) level becomes
an equivalent test for a change in the median field level over
time.

3. Results

We now demonstrate the MLR prediction techniques using
sadlinity survey data from three separate agriculture fields. Mul-
tiple linear regression models, which were estimated with cal-
ibration salinity data from each field, are used to construct field
average salinity estimates and range interval estimates and are
combined with ordinary kriging to produce spatial salinity
maps. We dso demongtrate the use of a cokriging model in one
of these fields and compare these results to the MLR predic-
tions. All of the following statistical analysis, with the exception
of the variogram estimation, kriging, and cokriging procedures,
was carried out using SAS (SASSTAT and SAS/IML, version
5) [SAS Institute, Inc., 19853, b]. The kriging and cokriging
models were developed using GEOPACK (version 1.0) [Yates
and Yates, 1990].

Before proceeding further, we wish to emphasize the follow-
ing points. In each analysis we will assume that an appropriate
set of calibration data exists and a suitable MLR model has
aready been identified and estimated. Additionally, note that
all of the various surface array, insertion probe, and/or EM
survey data in each field have been transformed and decorre-
lated using a principal components procedure and that in each
case the regression models have been fit to these principal
component scores. The jutification behind use of the principa
components procedure, along with a detailed discussion con-
cerning the selection of calibration site locations for soil sam-
pling and the statistical criteria for MLR parameter identifi-
cation, is given in our companion paper [Lesch et al., thisissue].
For the purpose of this present discussion, the reader can
interpret the first principal component score (k,) to represent
an approximate average of the various EC, readings at each
survey site and the remaining scores to represent weighted
linear contrasts between these same sensor readings.

The first two data sets analyzed here consist of EC, and
salinity survey data collected in two 40-acre (16.2 ha) cotton
fields near Hanford, Cdlifornia, in May 1989. These two fields,
referred to as S2A and S2B, were originally discussed by Lesch
et al. [1992]. In each field, electromagnetic induction readings
were acquired at approximately 200 sites on a 25-m systematic
survey grid. Soil core samples (0.0-0.3 m depth) were also
collected a each site and analyzed for gross sainity (EC,,
decisiemens per meter) [Rhoades et al., 1989]. Specific details
concerning the survey design, soil sampling methods, spatial
coordinate determination, and field taxonomic descriptions
can be found in the work by Lesch et al. [1992]. These two fields
(data sets) are well suited for comparing the predictive capa
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Table 2. EC, and In (EC,) Univariate Summary Statistics
for Fields S2A and S2B

Field S2A (N = 206)

Field S2B (N = 193)

EC,, dS/m In (EC,) EC,, dS/m In (EC,)
Mean 4.50 1.017 6.63 1.680
Variance 27.80 0.937 21.84 0.476
Skewness 2.85 0.310 3.28 —0.651
Kurtosis 10.92 -0.522 19.78 0.955
Quantiles
99% 27.44 3312 29.11 3.371
95% 14.93 2.703 12.55 2.530
90% 9.73 2.275 11.32 2.427
75% 6.07 1.804 8.58 2.150
50% 247 0.903 6.04 1.799
25% 1.22 0.200 3.64 1.292
10% 0.89 -0.113 2.03 0.710
5% 0.70 —0.358 1.29 0.253
1% 0.53 —0.642 0.72 -0.329

bilities of the MLR modeling approach, since soil salinity data
were collected at every survey site.

In the original analysis [Lesch et al., 1992], MLR models
were developed that related weighted averages of log-
transformed EM-38 horizontal and vertical signals, along with
sample site microelevation data, to log-transformed soil salin-
ity (In (EC,)) measurements. In our present analysis we have
disregarded the microelevation data and instead have incorpo-
rated the spatial (x, y) location coordinates of the survey sites
directly into the prediction models. Additionally, for this anal-
ysis we have included insertion four-probe data (measured
within the 0.0-0.3 m depth at each survey site) into both
auxiliary data sets. These four-probe readings were acquired at

30.0

Salinity Histogram Distribution
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25.0

Salinity Histogram Distribution
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0 [] 12 18 24 30
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Figure 1. Histograms of the observed EC, data from fields
S2A and S2B.
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Figure 2. Variograms of the observed In (EC,) data from
fields S2A and S2B.

the same time the EM-38 readings were taken but were not
used in the prediction models during the original analysis.

EC, and In (EC,) univariate summary statistics for both
fields are given in Table 2, and histograms of the sample EC,
data are shown in Figure 1. The untransformed salinity data
appeared approximately lognormally distributed in each field,
with field S2A exhibiting the most within-field salinity variabil-
ity. Variograms of the observed In (EC,) data from fields S2A
and S2B are shown in Figure 2. Significant spatial correlation
was apparent in the In (EC,) data from S2A, while the data
from S2B appeared only mildly correlated.

MLR model statistics, analysis of variance tables, and resid-
ual diagnostics for fields S2A and S2B are given in Tables
3a-3c. Each estimated model was based on 20 calibration sites
(representing about 10% of the total survey data). Both MLR
models included multiple principal component scores (re-
ferred to in Table 3a as «,, k,, etc.) as well as one or more
trend surface terms. The R? value for the MLR model in S2A
was higher than the corresponding R* value in S2B (0.933
versus 0.767); however, the MSE estimates for both models
were approximately equal. Shapiro-Wilk (SW) test statistics
were used to assess the residual normality assumption; these
test statistics revealed no apparent lack of normality within the
residuals from either model. Residual plots were also analyzed;
no patterns in the residuals were evident.

Since no duplicate samples were collected at any of the
survey sites in S2A or S2B, it was impossible to construct
lack-of-fit tests. Instead, Moran residual spatial autocorrela-
tion test statistics (7,,) were constructed following the meth-
ods of Upton and Fingleton [1985]. Row elements in the prox-
imity matrix were defined to be proportional to the inverse of
the squared distance between calibration sites, with each row
constrained to sum to 1. These test statistics, shown in Table
3c, did not indicate any positive residual spatial correlation.

Table 3a. MLR Model Statistics for Ficlds S2A and S2B
Field MLR Model
S2A (n = 20)  E[ln (EC,)] = 0.730 + 0.982x; — 0.088«,
— 0.155k; — 0.024x
+ 0.159y + 0.219x2
S2B (n = 20)  E[ln (EC,)] = 1.694 + 0.443x, + 0.049x,

~ 0.311k,k, + 0.102x
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Table 3b. Anaysisof Variance Tablesfor Fields S2A and
S2B
Source df ss MS F Prob > F
Field S2A
Model 6 12.8831 2.1472 30.32 0.0001
Error 13 0.9207 0.0708
Total 19 13.8038
Field S2B
Model 4 3.0787 0.7697 12.35 0.0001
Error 15 0.9352 0.0624
Total 19 4.0139

Here df denotes degrees of freedom; SS, sum of squares; and MS,
mean square. For field S2A the root MSE is 0.2661 and R* = 0.9333;
for field S2B the root MSE is 0.2497 and R? = 0.7670.

Having satisfied al of the statistical assumptions, the MLR
models were then used to compute field average In (EC,),
range interval, and classification accuracy estimates for each
field. These estimates, along with the corresponding observed
values, are shown in Table 4. Note that the true average In
(EC,) levels in both fields were well within the predicted 95%
confidence intervals. Additionally, the predicted range interval
and classification accuracy estimates agreed well with the ob-
served levels, especialy in field S2A.

The estimates shown in Table 4 for S2A can be interpreted
in the following manner. The predicted average In (EC,) was
0.957 = 0.125; hence the median field salinity level in the
0.0-0.3 m depth would be estimated as ¢°-°>7 = 2.60 dS/m
with an approximate 95% confidence interval of (2.30, 2.95)
dSm. We expect that 43.0% of the field has salinity levels
below 2 dS/m, 24.7%, has sdinity levels between 2 and 4 dS/m,
17.9% has levels between 4 and 8 dSm, 9.2% has levels be-
tween 8 and 16 dS/m, and 5.2% of the field exceeds 16 dS/m.
Finally, we would expect that about 75% of the MLR predic-
tions will be contained within their respective true range inter-
vals (having the above defined interval endpoints).

Figures 3 and 4, corresponding to field S2A and S2B, re-
spectively, contain a plot of the survey and cdibration site
locations (Figures 3a and 4a), a map of the spatial EC, distri-
bution based on the MLR predictions (Figures 3b and 4b), and
a map of the spatial EC, distribution based on the observed
EC, data (Figures 3c and 4c). Ordinary punctual kriging (on a
10 m by 10 m grid) was used to create both the predicted and
observed maps. Variogram models for the predicted salinity
maps were based entirely on the predicted MLR datain each
field. Note that there is good correspondence between the
observed and predicted maps in both cases.

A limited cokriging analysis was aso performed on the sur-
vey datafrom field S2A in the following manner. The sample
variogram of the first principal component was estimated using
the x; data from al 206 survey sites. Eighty of these sites were
then selected at random and used to estimate the sample In
(EC,) variogram and In(EC,)/«, cross variogram. All three
fitted variograms were spherical and appeared to adequately
predict the spatial In (EC,) and «, data under cross validation.
The final cokriging equations were then derived by inverting
the joint covariance matrix defined by the fitted variogram
models.

Figure 3d displays a plot of the survey and cokriging cali-
bration site locations. These locations, which were selected by
drawing a simple random sample of size 80 from the full survey

Table 3c. Residual Diagnostics for Fields S2A and S2B
Field 2A Field S2B
SW normality score 0.9498 0.9707
Prob < SW 0.3751 0.7589
Moran residua score -0.9154 -0.6310
Prob > I, 0.8199 0.7360

SW denotes Shapiro-Wilk.

data set, appear to be spread reasonably well throughout the
field. Figure 3e displays the predicted map of the spatial EC,
distribution based on the cokriging model (all estimates were
once again made on a 10 m by 10 m grid). Like the MLR
prediction map (Figure 3b), this map reflects most of the
salient features of the observed spatial EC, pattern shown in
Figure 3c. However, the cokriging map does appear to be
dightly more “smooth,” i.e., less variable.

Since our cokriging model used 80 calibration sites, there
remained 206 - 80 = 126 prediction sites with known In (EC,)
levelsin the S2A survey data set. Ten of these 126 sites also
happened to be chosen as cdibration sites for the MLR mode;
thus only 116 survey sites existed which could be classified as
prediction sites for both models. An empirical comparison
between these 116 observed and predicted In (EC,) values
(from both the MLR and cokriging models) is shown in Table
5. The means of the predicted distributions were 0.9518
(MLR) and 1.0489 (cokriging), both of which were close to the
true, observed mean of 0.9721. The variance of the cokriging
predictions was 0.6837, which was significantly lower than the
observed sample variance estimate of 0.9435. Theoreticaly,
the predictions from the regression model should also have
been less variable than the sample data. However, in this ex-
ample the regression prediction variance estimate was dightly
larger (1.0207). The quantile estimates associated with both
prediction data sets confirmed that the cokriging predictions
were |ess variable than the regression predictions. Finaly, the
mean, variance, and quantile estimates associated with the
MLR and cokriging residuals appeared basicaly similar. The
differences that did show up were minor; the cokriging resid-
uals indicated a dight prediction bias (t score, -1.858) and
appeared somewhat more variable (0.1985 versus 0.1682).

In general, the data shown in Table 5 suggest that the two
modeling strategies produced similar results. Indeed, the mi-
nor bias and oversmoothing inherent in the cokriging predic-

Table4. Observed and Predicted Field Average In (EC,),
Range Interval, and Classification Accuracy Estimates for
Fields S2A and S2B

Field A Field 28
Observed  Predicted ~ Observed  Predicted

G 1017 0.957 1680 1694

2 0.00334 0.00288
95% Cl (0.832,1.082) (1.580,1.808)
o[0, 7 0.425 0.430 0.104 0.066
o2, 41 0.231 0.247 0.191 0.213
o[4, g] 0.161 0.179 0.387 0.488
o[s, 16 0134 0.092 0.301 0.188
O[>16]  0.049 0.052 0.017 0.045

C, 0.699 0.745 0.595 0.691

G denotes field average In (EC,); Cl denotes confidence interva; @
denotesrangeinterval, and C , denotes classification accuracy.
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Figure 3. Fidd S2A: (a) plot of the EC, survey and EC, cdlibration site used in the MLR model, (b) map

of the spatiad EC, distribution based on the MLR predictions, (c) map of the spatiad EC, distribution based
on the observed EC, data, (d) plot of the EC, survey and EC, cdibration sites used in the cokriging model,
and (e) map of the spatiad EC, distribution based on the cokriging predictions.

tions are probably irrelevant, since they were most likely
caused by our decision to use only one covariate in the cokrig-
ing anadysis. On the other hand, what is very relevant here is
not the minor difference between the two prediction distribu-
tions, but rather the mgor difference between the two calibra
tion sample sizes. The MLR model was based on only 20
calibration samples. As the results in Table 5 demonstrate, the
cokriging model, which required a fourfold increase in the
calibration sample size, did not in any way reduce the magni-
tude of the fina prediction error.

The third set of sdlinity survey data was collected from a
160-acre (64.8 ha) cotton field located in the Westland Water
District, near Coalinga, California, in May 1993. The entire
field had been recently sprinkler preirrigated and was being
seeded with cotton on 30-inch (76-cm) beds when the salinity
survey took place. Soil texture within the field ranged from
clay-loam to heavy clay, with the percent clay content increas-
ing with depth. The instrument survey consisted of 178 sites
where both EM-38 (horizontal and vertical readings) and two
sets of fixed-array four-electrode readings were acquired
[Rhoades, 1992]. Soil samples within the 0.0-0.3, 0.3-0.6, and
0.6-0.9 m depths were taken at 24 of these survey sites and
analyzed for soil salinity (EC,, decisiemens per meter). EC,

data from eight of these sites were set aside as a validation test
set (these sdinity levels were not used during the MLR model
identification and estimation stages of the analysis). Data from
the remaining 16 sites were used for calibrating the MLR
models. Duplicate cores were acquired at five of these 16
sample sites (separation spacing of 0.5 m) to facilitate the
construction of lack-of-fit tests. All the instrument readings
and soil cores were collected in the furrows.

MLR model satistics, analysis of variance tables, and resid-
ua diagnostics for field WWD-1 appear in Tables 6a-6¢. The
estimated multivariate MLR equation in this field was a func-
tion of multiple principal component scores and a single trend
surface term. Model R? and MSE estimates suggested reason-
able prediction accuracy in the 0.0-0.3 m depth and good
prediction accuracy in 0.3-0.6 and 0.6-0.9 m depths. All of the
lack-of-fit and SW residua normality test datistics were non-
significant, suggesting that the modeling assumptions were sat-
isfied.

Tables 7a and 7b list the predicted field average In (EC,),
range interval, classfication accuracy estimates, and observed
and predicted sdinity levels a the eight prediction stes. The
back transformed median EC, estimates were 4.52, 7.68, and
9.95 dS/m, indicating that the salt loading was increasing with
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Figure 4. Fied S2B: (a) plot of the EC, survey and EC, cdlibration site locations, (b) map of the spatial EC,
distribution based on the MLR predictions, and (c) map of the spatia EC, distribution based on the observed
EC, data

depth. The range interval estimates also suggested the same that our ability to place the EC, predictions into their correct
effect; 26.9%, 54.2% and 68.8% of the field was predicted to be  interval ranges increased with the sampling depth. The ob-
above 8 dS/m in the 0.0-0.3, 0.3-0.6, and 0.6-0.9 m depths, served In (EC,) data from the eight vaidation sites were com-
respectively. The classification accuracy estimates suggested pared to the corresponding MLR predicted levels, to check for

Table 5. Comparison of Observed Versus MLR and Cokriging Predicted In (EC,) Levels at 116 Sample Sites Within Field
S2A (MLR and Cokriging Residua Distributions Also Shown)

Sample MLR Cokriging MLR Cokriging

Data Predictions Predictions Residuals Residuals

Mean 0.9721 0.9518 1.0489 0.0203 -0.0768
Variance 0.9435 1.0207 0.6837 0.1682 0.1985
Standard Deviation 0.9714 1.0103 0.8269 0.4102 0.4455
t test mean = 0 0.532 -1.858
Prob > |z | 0.596 0.066

Quantiles

99% 3.312 3.758 3.352 1.142 1.071
95% 2.519 2.680 2.466 0.662 0.719
90% 2.275 2.239 2.137 0.521 0.469
75% 1.809 1.633 1.553 0.259 0.206
50% 0.850 0.774 0.934 -0.035 -0.098
25% 0.169 0.203 0.487 -0.276 -0.384
10% -0.128 -0.082 -0.104 -0.404 -0.592
5% -0.498 -0.597 -0.267 -0.569 -0.772

1% -0.642 -0.820 -0.542 -0.876 ~0.998
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Table 6a. MLR Model Statistics for Field WWD-1 Table 6c. Residual Diagnostics for Field WWD-1
MLR Models 0.0-0.3 m 0.3-0.6 m 0.6-0.9 m
Depth (n = 21: 16 sites with two cores from five sites) Depth Depth Depth
0.0-0.3 m E[lln (EC,)] = 1.809 + 0.487k, + 0.021«, Root MSE 0.4687 0.2873 0.2046
+ 0.056K;k, + 0.195k; + 0391y R? 0.7320 0.8843 0.8827
0.3-0.6 m E[ln (EC,)] = 2.602 + 0.347k, - 0.242k, SW normality score 0.9614 0.9662 0.9869
+ 0274k, + 0.126k; + 073y  Prob < SW 0.5346 0.6351 0.9825
0.6-09 m E[ln (EC,)] = 2.677 + 0.233k; - 0.202«,

+ 0.200k;k, + 0.100k5 + 0.491y

model adequacy. The observed salinity values were found t0 be
contained within the 95% prediction intervals in 23 out of the
24 samples.

Figure 5 displays a series of graphs pertaining to field
WWND-1. Figure 5a displays the instrument survey grid, along
with the locations of both the 16 calibration and eight valida-
tion sites. Figure 5b shows the correspondence between the
observed and predicted EC, levels for the 24 samples from the
eight validation sites. The remaining three plots (Figures 5c,
5d, and 5¢) display the predicted spatia EC, distributions
within the 0.0-0.3, 0.3-0.6, and 0.6-0.9 m sample depths,
respectively. As before, each salinity map was created by per-
forming ordinary punctua kriging (25 by 25 m grid) on the
predicted MLR data at each depth. The maps show a buildup
in soil salinity in the northern end of the field, along with an
apparent incursion of salinity moving from the northwest to
southeast areas of the field.

4. Discussion

The use of an MLR model in place of cokriging can be quite
advantageous under certain situations. Calibration (primary
attribute) sample sizes can be greatly reduced, fewer model
parameters need to be estimated, unbiased estimates can be
constructed at new prediction sites, formal tests for a shift in
field average attribute level over time can be applied, and the
modeling technique generalizes to three-dimensiona (multiple
depth) predictions quite easily. Probability estimates for one-

Table 6b. Anayss of Variance Tables for Field WWD-1

Source df ss MS F Prob > F
0.0-0.3 m
Model 5 8.9999 1.8000 8.19 0.0007
Error 15 3.2955 0.2197
Lack of fit 10 2.0878 0.2088 0.864 0.6069
Pure 5 1.2077 0.2415
Total 20 12.2954
0.3-0.6 m
Model 5 9.4641 1.8928 22,94 0.0001
Error 15 1.2378 0.0825
Lack of fit 10 0.8006 0.0801 0.916 0.5783
Pure 5 0.4372 0.0874
Total 20 10.7019
0.6-0.9 m
Model 5 4.7251 0.9450 22.57 0.0001
Error 15 0.6280 0.0419
Lack of fit 10 0.3175 0.0318 0.489 0.8429
Pure 5 0.3105 0.0621
Total 20 5.3531

SW denotes Shapiro-Wilk.

or two-sided classification intervals can also be constructed,
eliminating the need for more complicated modeling strategies
such as digunctive or indicator cokriging. Additionaly, by us-
ing ordinary kriging estimation techniques, spatial maps of the
predicted attribute levels can be made at any required resolu-
tion. Of al the advantages listed above, the reduction in the
primary attribute sample size is probably the most important.
Extracting and analyzing large numbers of soil samplesis ex-
tremely expensive; hence minimizing the overall soil sample
size becomes critical for the successful implementation of cost-
effective sdinity survey work.

Of course, the MLR modeling approach depends upon a
pivotal assumption: spatidly uncorrelated residuas. In sdinity
survey work we have found this assumption to be generaly
satisfied in practice. However, this assumption of spatialy un-
correlated residuals should never be made blindly; it must be
assessed during the data analysis before using the MLR model
for prediction purposes. In general, the applicability of a MLR
modeling approach will ultimately depend on the covariate
information. If the instrument(s) used to measure the primary
attribute are robust to extraneous sources of interference, then
this methodology should prove useful. On the other hand, if
the instrument readings are subject to significant distortion
from additional, spatially dependent sources of interference,
then more elaborate modeling techniques will need to be em-
ployed.

When the spatially uncorrelated residua assumption is
grosdly violated, the analyst will need to either employ some
type of geostatistical estimation technique (such as cokriging)
or use a SAR model with a specialized (correlated) residual
error structure. Additionaly, it is very unlikely that either of
these techniques will significantly increase the prediction ac-
curacy unless the cdibration sample size is aso adequately
increased. Examples of cokriging can be found in both the
statistical and environmenta literature (see Journel and Huij-

Table 7a. Predicted Field Average In (EC,), Range
Intervals, and Classification Accuracy Estimates for Field
WWD-1

0.0-0.3 m Depth 0.3-0.6 m Depth 0.6-0.9 m Depth

G 1509 2.039 2.298
72 0.01048 0.00393 0.00200
95% Cl (1.291,1.728) 1.905,2.173) (2.203,2.393)
[0, 7] 0.187 0.071 0.003

0[2, 41 0.245 0.146 0.077
04,81 0.299 0.241 0.232

0[8, 16] 0.205 0.371 0.492
o[>16] 0.064 0.171 0.196

C, 0.470 0.630 0.724

Here df denotes degree of freedom; SS, sum of squares, and MS,
mean square.

G denotes field average In (EC,); Cl denotes confidence interval; ©
denotes range interval, and C, denotes classification accuracy.
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Table 7b. Observed and Predicted EC, Data at Eight
Prediction Sites

0.0-0.3 m Depth

0.3-0.6 m Depth 0.6-0.9 m Depth

Site Observed Predicted Observed Predicted Observed Predicted

29 9.79 10.60 14.62 13.10 18.60 14.22
36 7.69 7.48 10.53 12.86 13.62 13.53
79 1.28 1.64 321 5.26 6.60 8.12
97 7.33 7.52 15.43 11.33 15.44 13.31
100 1.08 3.20 13.13 9.20 16.50 12.15
117 5.93 6.60 15.66 14.76 14.58 15.70
139 6.20 7.36 15.71 12.79 16.12 13.81
159 117 1.70 1.88 1.58 4.50 3.12

Values are in decisiemens per meter.

bregts [1978], Myers [1982], Yates [1986], Isaaks and Srivastava
[1989], and Cressie [1990], in addition to the articles mentioned
in the introduction). Examples of regression models with dis-
tance dependent autocorrelated error structures have been
discussed by Pocock et al. [1982], Murdia and Marshall [1984],
Mardiu and Watkins [1989], and Samra et al. [1991].

A menu-driven statistical computer program capable of per-
forming the MLR model-fitting and salinity estimation tech-

niques described in this paper is available from the authors on
request. The program is designed for use on IBM compatible
personal computers (386 microprocessor or higher recom-
mended). Data sets for the three fields discussed in this paper
are also available upon request.

5. Conclusion

A datistical calibration technique based on a MLR model-
ing methodology has been developed for predicting multiple-
depth, field scale spatial sdlinity distributions from electromag-
netic induction measurements. The modeling assumptions and
prediction abilities associated with the MLR technique have
been compared to cokriging and demonstrated using EC, and
EC, data from three separate survey projects. The merits of
the MLR approach have been highlighted with respect to its
cost-effectiveness, multiple prediction capabilities, and para-
metric model-testing abilities. Tests for residual spatial inde-
pendence, a necessary condition for the application of the
MLR modeling methodology, have been reviewed and dem-
onstrated using the sample data sets.

The single greatest advantage of the MLR modeling tech-
nique is the ability to significantly reduce the primary attribute

(a) _ (b) Observed v.s. Predicted ECa
WWD-1 : Survey Grid 20 at 8 validation sites
[E P —— I 030 '36_'6'0’ RN B survey & calibration site
SN R & 60-90 cm & survey & validation site
_ @ e e " S 15[ samples *] e survey site
2 465 W o » ¢ ¢ o o s e . ; - m L :
5465 | .- B ]
o ORI S-DI BTNy 1 O ECe<4dS/m
L] EEEREESEERES T - 1 W 4<ECe<8dS/m
- LSRR o sr 1 B 8<ECe<16dS/m
I Do e [
..... .- m. [ B ECo>16dS/m
0 0 " Il PR U S T S S N R
0 145 290 435 560 725 0 5 10 15 20
X (meters) Observed ECe
(© (d) (e)
WWD-1: Prd ECe O-30 cm WWD-1: Prd ECe 30-60 cm WWD-1: Prd ECe 60-90 cm
7 7 5 PACIOIOIOOIEIOI I IO I DI ——] 7 7 5 » 7 7 5 o207
RO AN OO ON ’e 1 ; 9292%
620 620 [ S 620 EIN ;
g 465 ~ | 5 465 == g 465
"&; — QLRSS "q—; — ‘a-;
£ 110 = £ 310 £ 310
> > >
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Figure 5. Field WWD-1: (a) plot of the EC, survey and EC, calibration and prediction site locations, (b)

correspondence between the observed and predicted EC, levels for the 24 validation samples (eight sites,
three depths per site), (c) map of the spatial EC, distribution based on the MLR predictions for the 0.0-0.3
m depth, (d) same as Figure 5¢ for the 0.3-0.6 m depth, and (€) same as Figure 5c for the 0.6-0.9 m depth.
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sample size. However, the locations of the salinity sample sites
must be carefully chosen in order to insure the collection of
calibration data that can be used to effectively identify and
estimate an appropriate MLR model. Hence when minimizing
the calibration sample size is critical, this modeling technique
must be used in conjunction with specialized sampling plans. A
spatial sampling agorithm suitable for MLR model identifica
tion and estimation is described in the companion paper [Lesch
et al., this issue].

Appendix

Letj = 1, -+, m, where the x,, regressor variables are
observed a al m sites and they, attribute is observed a only
the first n dtes (m> n). Let ¥,, represent the predicted
attribute level a the m th site. Suppose that

P
yi=c+ 2 Brxy + &,
k=1

where B, are known for al k and the £; errors are indepen-
dently and identically distributed as normal (0, o®) random
variables. From linear modeling theory the standard minimum
variance egtimate of ¥,, is

P
Pm = bo 4 Ekamk
k=1

where

i=1 k=1 i=1

n P n
by = E (yiln) — E [Bk E (xik/n):|~

From the theory of regionalized variables the ordinary cokrig
ing estimator is

n p m
Im = E ay; t+ E 2 Ajic Xk
i—1 k=1 j=1

where

and the a; and A;, weights are chosen to minimize the residual
variance r,, = (y, —¥,,)>. Expanding r,, yields

"'m =Ym = Ym

n

P
=C+Ekamk+'§m_2aiyi

k=1 i=1

p m
> 2 N

k=1 ,=I

n

P P
=c+ D Bk + En — az(c"‘E Bixu + §,)

k=1 =1\ k=1

p m
-2 2 Ak

k=1j=1

385

n

=&, — Eai§;+c— zaic

i-|l i=1

lﬁk(xmk_i aixik)jl - [ % )\jkxjk:|

n P n m
=& 2 ag + 2 [Bk(xmk - 2 aixik) _2 )\jkxjk]
k=1 i=1 j=1

i=1

-3

k=1

since

n
¢ — 2 Ot,-c=0.
i=1

By the independent error assumption, note that Var (r,)
becomes

é ai§i>

i=1

|:Bk(xmk - i aixik) - i Ajkxjk])

Hence the optimal values for the o; and A;; weights are those
values which minimize each component subject to the cokrig-
ing congtraints. Note that

Va’( ‘fm_zai‘fi)

Var (r,,) = Var (g,,, -

+Var(i

k=1

i=1

is minimized by choosing «; =1/n for dl i. Additionaly, the
variance of the second component will be O if the A;; weights
are chosen to be Ay, = —B,/n for aAlj <n,A; = 0 for all
j>n,j#m, and Ay =B, forj =m Substituting these
values into the cokriging equation yields

i=1

n P n
Fm =2 (n)y; + 2, [kamk -2 (Bk/n)xik]
i=1 k=1

P
+ 2 kamk

k=1

= (yin) — 2, lBk > (x,-k/n)]

i=1 k=1 i=1

p
= bo + E kamk-

k=1

Thus at all new prediction sites, ordinary cokriging reduces
exactly to the multiple linear regression model.
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